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Abstract

Non-small-cell lung cancer (NSCLC) represents approximately 80-85% of lung cancer diagnoses and is
the leading cause of cancer-related death worldwide. Prediction of time-to-death-event is necessary
and helpful for deducing proper treatment at early stages. In this study, we utilize a Deep Neural
Network to learn parameters of parametric distribution from well-known probability distribution.
This model learns complex relationships between patient’ s covariates and produce individual s
survival curve. We discover that most of time-to—event data encounters highly imbalance in terms of
duration (time to event occurrence). Therefore, we propose a novel loss function to tackle this
issue. The experimental results demonstrate that our proposal achieves competitive performance
compared to conventional methods in terms of C-index metric.

1. Introduction in machine learning field. We ideate a novel loss
Survival analysis (also called time-to—event function to solve this problem.

analysis) is a field of statistics that widely In this study, we propose a deep neural network

used in advertisement [1], medical [2, 3] and learnt complex relationships between

industry [4]. Recently, leverage advance in deep individual’ s covariates and distributional
learning and machine learning, researchers use representation of whole survival time in dataset.
neural network to explore and understand the The output of model is two parameters (scale and
relationships between individual’ s covariates shape) of a parametric distribution. Through the
(e.g. staging, age, gender) to estimate scale and shape parameters, we can generate
probability of an event of interest until it individual’ s survival probability curve which is
occurs. 1.0 (or 100% alive) at time =zero and
Especially in medical field, survival analysis monotonically decrease to O over time.

is applied to estimate risk to death event at

each patient based on clinical data (or medical 2. Related Work

imaging data). Knowing patients have low or high In this section, we review the wuse of
risk to help outline road map for treatment at conventional approaches. Survival analysis was
early stages. Imbalance data is also a challenge firstly constructed and wutilized by medical
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researchers and data analysts to measure the
lifespans of a certain population. Nowadays, it
has been found in various applications such as
cancer patients [5], customer churn [6], credit
scoring [7], and failure times of mechanical
systems [8].

The Kaplan-Meier estimator method is firstly
utilized in the statistical and medical field,

Input covariates

® Multiplication

@ -
SeLU function

Figure 1. The overall architecture.

which are able to learn flexible and complex time
distributions, but not incorporating patient’ s
covariates. Therefore, 1t 1is hard to generate
individual’ s survival curve. To tackle this
issue, the Cox proportional hazard (CPH) model [9]
was introduced to take patient’ s covariates.
However, CPH has limitation in learning impact of
covariates due to the use of constant factor.
Recently, DeepSurv [10] and DeepHit [11] were
introduced and attracted much attention from
researchers. However , Deephit  exists  some
limitations with that its maximum of survival
time 1s much larger than number of samples. In
the meanwhile, DeepSurv model 1is not a fully
parametric model .

3. Distribution Network

In this section, we describe our proposal,
Parametric Distribution Estimation based Neural
Network, depicted in Figure 1.

3.1 Survival Data

Survival data provides three type of
information for each patient: i) observed
covariates, 1ii) duration (time from start to
event
EE

event | time (days)
LCD4971  77.15068 Male 1 3 1 113
LC02966 6831233  Female ... 2 1 0 1826
1C05230 73.64932  Male 3 2 1 362

Figure 2. Some samples of survival data.

occurrence), and iii) type of event (e.g., death
or alive). TFigure 2 shows some samples of
survival data.

3.2 Distribution Network Architecture

The aim of survival analysis 1is to predict
individual’ s survival curve, S(-|X) = P(T > t]
X), which could be discrete, continuous or a
mixture of both. In this study, we focus on the
continuous probabilistic distribution. A very
popular probabilistic distribution for survival
is the Weibull distribution. The Weibull
distribution is

usually known as a two—parametric probabilistic
distribution since the location parameter is not
used and set to zero. The Weibull distribution is
presented as follows:

f(t a,p) = Bat® te Pt (1)
F(t,a,p) =1 — e Ft” (2)
St,a,f) =1—F(t,a,p) (3)

Where f(.) is the probability density function,
F(.) is the cumulative density function, S(.) is
the survival function, ais the shape parameter,
B is the scale parameter and t are timepoints
beyond the observed range.

The a and B parameters are learnt from input
covariates and further generate probability
density distribution and survival distribution of
each patient beyond the observed range of time.

3.30bjective function
As we aforementioned
includes  non-censored and  censored
Therefore, survival regression (or
analysis) differs from conventional regression
approaches. It takes both non-censored and
censored data which usually is seen as missing

dataset
data.
survival

that survival
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data. Herein, we apply maximum likelihood

formulation to approximate the distribution of
the survival duration distribution of the dataset.
e For non-censored data, we attempt to
maximize the ELBO loss as follows:
IP(N|@) = In([TN) P(T = t|X = x,,©)
> Zi5 (E[InP(T = X = x;,0])

= ELBOy(0) (4)
“1 i
o 5
Figure 3. a) Distribution of survival time, b)

Probability density of survival time.

e For censored data, we also apply ELBO loss
with a change to fit with this type of data.
InP(C|@) = In([T1'%, P(T > t;|X = x;,©)

> YN (E[InP(T > t;|X = x;, 0])

= ELBO(0©) (5)

Where @ is the weights of model, N is the set of

non—censored data and C is the set of censored
data.

To handle imbalance data, we propose a novel
module to enhance effect of minor group. As we
can see in Figure 3 (left), the distribution of
survival time mostly distributed as early
timepoint and decreased beyond follow-up time.

Therefore, it leads to less contribute to the
loss function at latter timepoints and mostly
bias on early timepoints. We come up with an idea
that we first calculate probability density
distribution of survival duration and then split
into 10 bins as illustrated in Figure 3 (right).
We classify which group the patients belong to
base on their survival time. Finally, we
integrate above loss functions to generate
overall loss as follows:

Loss = ELBOy(@®) * e'™Pn + Y * ELBO((®) * e'™Pc  (6)
Where p, and p, is probability density of non-
censored patients and censored patients,
respectively. Y 1is the scalar coefficient that
presents the effect of loss of censored data to
the combined loss.

4. Experimental result

We conducted comprehensive experiments on the
dataset collected from Chonnam National
University hospital (CNUH), South Korea. We also
evaluate and compare our proposal with existing
methods.

4.1 Dataset

This dataset was collected and verified by
doctors at CNUH. The dataset consists of 2690
non-small cell lung cancer (NSCLC) patients with
survival time, death event and 8 input covariates
such as histology, age, gender, overall stage, M

Table 1. Comparison to prior methods (higher is
better).
Model C-index
CoxPH [5] 0.7555 *+ 2.45e-4
DeepSurv [6] |0.7562 + 9.13e—4
Deepllit [7] |0.7579 £ 1.73e-3
Our proposal |0.7653 = 1.64e-3
stage, N stage, T stage, smoking status and

All patients were anonymized and
We split

smoking amount.
replaced by ID number before analysis.

data into two sets (training and testing set)
with ratio of 80:20. In training set, we apply 5-
fold cross—-validation to evaluate model in
training process.
4.2 Experimental settings

All experiments were conducted in Pytorch

framework and trained on the Geforce RTX 2080ti
GPU. In our model, we apply two fully-connected
(FC) layers [100, 100] to learn the input
covariates. After each FC layer, we use BatchNorm
[12] and ReLU [13] to normalize and convert model
to non-linear model. We utilize RMSprop [14]
optimizer with a learning rate of 0.001, 100
epochs to optimize all of weights in our model.
The batch size is set to the number of training
samples to capture distribution of whole training
set over every iteration. The Y coefficient is
chosen from {0.1, 0.3, 0.5, 0.7, 1}.

4.3 Experimental result

In this study, we implement existing methods
which achieve remarkable performance in terms of
C-index metric [15]. C-index is the most common
metric to evaluate performance of survival models.
It takes non-censored and censored data. C-index
has ability to correctly provide a reliable
ranking of the survival duration based on the
individual’ s risk score. The C-index is measured
as follows:
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Lijlri<r; * Ipi<p;*ei

Yijlri<r

C —index =
Sxej

(7)

J
Where T;, T;, e; are survival time of patient 7, j
and event of interest of patient 7, respectively.
And p;, p; are survival probability of patient s
and /, respectively.

The comparison results are shown in Table 1.
Our proposed method achieves the best performance

in terms of C-index with 0.7653. In addition, all

pairwise comparisons were statistically
significant (p < 0.05).
5. Conclusion

Survival analysis 1s an import and necessary
technique in medical field to help doctors
outline risk of death and propose proper
strategies for patients. In this study, we

leverage development of machine learning methods
to estimate individual’ s survival curve. The

study results demonstrated that our method can
estimate survival curve more accurately than
existing methods. Further, in order to obtain

helpful features from CT and PET images, we will
integrate all of them to boost performance.
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